Apples to Energy: Achieving Pittsburgh, PA's Climate Action Goals Using Food Waste as a Feedstock for Anaerobic Digestion

DRAWDOWN

Sarah Schanwald, Faculty Mentor: Dr. Tom Richard Department of Agricultural and Biological Engineering Pennsylvania State University

INTRODUCTION

- Anaerobic digesters (ADs) can turn biomass from farms, wastewater treatment plants (WWTP), & municipalities into energy through the creation of biogas (a mixture of CH₄ & CO₂ greenhouse gases (GHG))
- Although PA generates 1.1 million tons of food waste/yr, no ADs that use food waste as a feedstock exist in Pittsburgh (PGH) [2]
- Goals from PGH's Climate Action Plan include:
 - Reducing 80% of 2003's GHG emission levels by 2050 [1]
 - Installing 200 MW of renewable energy by 2030 [1]
- In this research, I determine if installing an AD that uses food waste as a feedstock could help PGH meet their climate goals by quantifying:
 - An estimate of the food waste PGH generates each year
 - How much GHG could be reduced by installing an AD
 - How much energy could be generated by installing an AD

YEAR	GHG %	Target Amt. of GHG	
TEAR	Reduction Goal	(US tons CO₂e /yr)	
2003	0	6.60 million	
2023	20	5.28 million	
2030	50	3.30 million	
2050	80	1.32 million	

Figure 1. PGH's Climate Action Plan goals in terms of GHG reductions per year (2017). [1]

BACKGROUND

- Methane (CH_4) has 34x the global warming potential of CO_2 , so it is beneficial to harness the biogas from AD & use it as energy (heat or electricity) to reduce GHG emissions to the atmosphere [3]
- In a best case scenario, CO₂ produced from AD can be sequestered in the ground (CCS) and CH₄ can be burned to produce electricity/heat

Figure 2. Simplified flow process of anaerobic digestion.

METHODOLOGY

- Determined how much food waste is produced in PGH each year using US Census Data and specialized equations from the National Renewable Energy Laboratory [4,5,6]
- Calculated the amount of biogas & energy that could be produced from AD using the amount of food waste in PGH as well as stoichiometry based on two collection scenarios (see Figure 3) & three "end-of-life" scenarios (see **Figure 5**): [6,7,8]
 - Landfill with flare
 - Landfill with electricity generation
 - AD with renewable natural gas (RNG) separation, carbon capture & storage (CCS), and electricity generation

Food Waste Producer	Medium Collection (% Obtained)	Low Collection (% Obtained)	F
Food Manufacturers	30	20	r
Grocery Stores	25	10	່ ປ່
Restaruants	20	10	
Hospitals	50	20	
Nursing Homes	10	5	
Universities	50	25	

igure 3. Low and medium scenarios regarding the amount of food waste that could ealistically be collected in an urban area. [6]

RESULTS

Figure 4. Left. Industrial food waste estimates for PGH in tons/yr. PGH produces ~169,584 tons of food waste/yr. [4,5,6]

Figure 5. Below. Three possible end-of-life scenarios for food waste in terms of GHG emittance.

% of 2050 GHG Goals Achieved				
	High Collection	Medium	Low	
	(Baseline)	Collection	Collection	
Scenario #1	-0.87	-0.19	-0.09	
Scenario #2	1.50	0.33	0.16	
Scenario #3	2.20	0.49	0.24	

% of 2030 Energy Goals Achieved with AD

0.34

waste, 0.27 tons of CO₂e would be emitted in Scenario #1, 0.47 tons of CO₂e would be drawn down in Scenario #2, and 0.69 tons of CO₂e would be drawn down in Scenario #3 (a difference of almost 1 ton of CO₂e from Scenario #1 to #3)

国战斗国

For every ton of food

Figure 6. Above. Percent of GHG reduction and energy goals from PGH's Climate Action Plan that could be achieved based on the 3 food waste scenarios. [1,7,9,10]

CONCLUSION

|Scenario #3

PGH should consider AD technology to meet their climate goals

0.71

Future research pathways to consider:

3.21

- Financial feasibility of food waste collection
- Other potential waste streams (stadiums, yard waste, etc.)
- Determining if adding an AD to a WWTP could be a more feasible alternative to promote co-digestion / higher biogas yield
- Looking at a high collection scenario

ACKNOWLEDGEMENTS

I would like to thank Dr. Tom Richard and Haley Stauffer for guiding me with my research, as well as my colleagues, Matt Arenas, Risa Lewis, Amanda Liebhardt, Laura Rodriguez, & Allie Saunders for their support.

REFERENCES*

- [1] Pittsburgh Climate Initiative (2017). Climate Action Plan: Version 3.0. Green Government Task Force of Pittsburgh. 1-81. Retrieved from: https://apps.pittsburghpa.gov/redtail/images/606_PCAP_3_0_Draft-_9-26-17.pdf
- [2] Pennsylvania Waste Industries Association: A Chapter of the National Waste & Recycling Association (2019). Waste Facts. Pennsylvania Waste Industries Association. Retrieved from: http://pawasteindustries.org/waste-industry/waste -facts/]
- * Scan QR code for full list of references ->