Brazilian Sugarcane Ethanol as an Expandable Green Alternative to Crude Oil Use

PRESENTER: Deepak Jaiswal

INTRODUCTION

~14% of global greenhouse gas (GHG) emission comes from transportation sector [1]. Even with aggressive reductions in travel growth, shifts to mass transport modes, strong efficiency improvement and deep market penetration by electric vehicles, there remains a large projected demand for dense liquid fuels in 2050 & beyond [2]. Brazilian sugarcane ethanol and bagasse is one of the few technologies already in place and demonstrated-and most importantly it is capable of expansion in a timely manner in order to reduce GHG emission from transport sector.

METHODS

BioCro to predict sugarcane productivity

we projected sugarcane production using the mechanistically rich BioCro model which is effective at handling the interactive effects of different climatic and atmospheric change variables acting at the level of the crop's biophysical, physiological and biochemical processes that underlie yield and responses to atmospheric change.

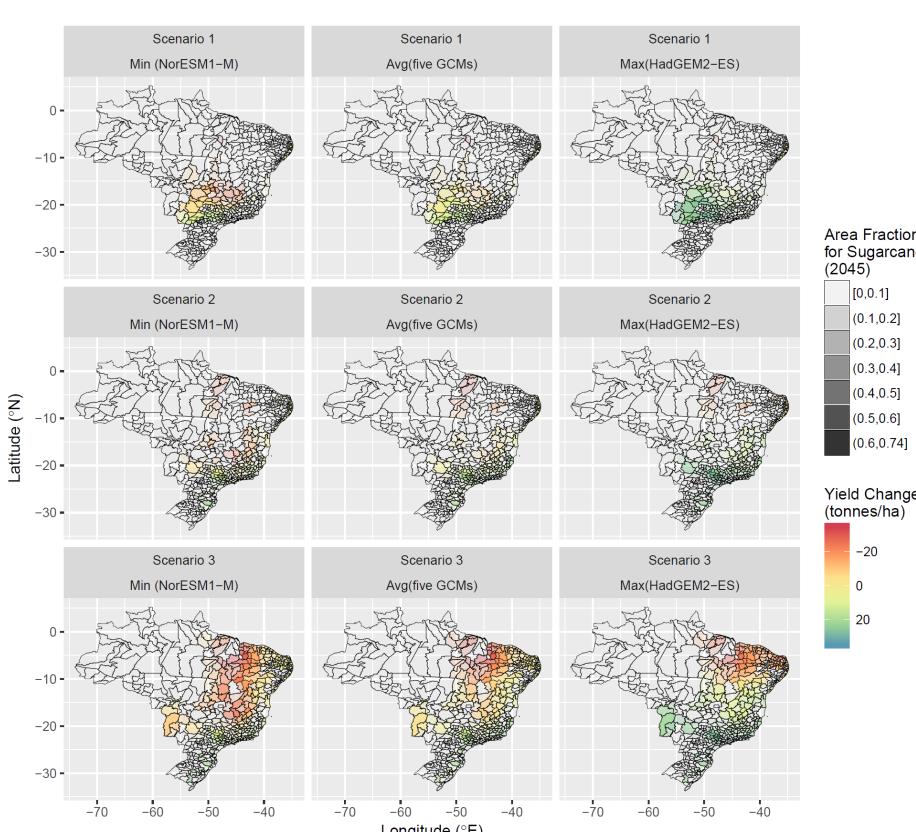
Climate and soil data for simulation

We used Brazilian national soil database [3], NCEP (historical) [4], and ISIMIP climate projection from five models(2041-2050) corresponding to business as usual (RCP8.5) scenario [5] to drive sugarcane productivity simulations.

Land area availability for sugarcane ethanol

Scenario 1	Scenario 2	Scenario 3		
Sugarcane	>Times series projection to	Same as		
expansion	estimate land required by	scenario 2		
is limited to	major crops of Brazil by 2045.	with the		
grazing	>Time series projection to	addition of		
areas	estimate animal units by	natural		
within the	2045.	vegetation		
agroecol-	>Time series projection to	which can		
ogical zone	estimate animal units per	be legally		
identified	hectare by 2045.	used for		
by	With improvement in pasture	agriculture		
Brazilian	intensity as per historical			
govern-	trends, most micro-region in			
ment	Brazil should be able to			
	provide land for biofuels			
	despite increased land			
	demand for food crops and			
	increased meat production.			
All the three scenarios protect forest areas under				
conservation				

References:


[1] <u>https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data</u>;[2] Biofuels Bioprod. Bioref. **9**, 476–483 (2015); [3] Soil Sci. Soc. Am. J. **69**, 649–652 (2005); [4] Bulletin of the American meteorological Society 77.3 (1996): 437-472; [5] Proc. Natl Acad. Sci. USA **111**, 3228– 3232 (2014);

Brazilian sugarcane ethanol can provide the equivalent of 3.63 to 12.77 million barrels per day of crude oil by 2045 under projected climate change while protecting forests under conservation and accounting for future demand of land for food and animal production. The corresponding range of CO₂ offsets is 0.55 to 2.0 Gigatons Vear¹.

Take a picture to download the full paper

Land availability and impact of climate change on sugarcane productivity

Cellulosic ethanol yield in equivalent in million barrels of oil per day (1st generation yield in bracket)

Climate Change	Land use Scenarios			
Impact	Scenario 1	Scenario 2	Scenario 3	
Maximum (HadGEM2 -ES)	6.07 (3.02)	4.45 (2.15)	12.77 (6.61)	
Average	5.00 (2.43)	3.91 (1.83)	11.20 (5.8)	
Minimum (NorESM1- M)	4.42 (2.11)	3.63 (1.71)	10.53 (5.43)	

Carbon offset in Gigatons year⁻¹ due to displacement of crude oil by cellulosic ethanol (values for 1st generation yield in bracket)

Climate Change	Land use Scenarios			
Impact	Scenario 1	Scenario 2	Scenario 3	
Maximum (HadGEM2 -ES)	0.95 (0.47)	0.70 (0.34)	2.00 (1.03)	
Average	0.78 (0.38)	0.60 (0.29)	1.75 (0.90)	
Minimum (NorESM1- M)	0.69 (0.33)	0.55 (0.26)	1.64 (0.85)	

Deepak Jaiswal¹, Amanda P. De Souza^{1,2}, Søren Larsen^{3,4,5}, David S. LeBauer^{1,6}, Fernando E. Miguez⁷, Gerd Sparovek³, Germán Bollero⁸, Marcos S. Buckeridge², Stephen P. Long^{1,8,9,10}

¹Energy Biosciences Institute, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana, IL 61801, USA.

²Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil ³Luiz de Queiroz College of Agriculture, Department of Soil Science,

³Luiz de Queiroz College of Agriculture, Department of Soli Science, University of São Paulo, Piracicaba (SP), CP 9, CEP 13419-900, Brazil. ⁴Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark.

⁵Danish Energy Association, Vodroffsvej 59, 1900 Frederiksberg C, Denmark

⁶National Center for Supercomputing Applications, **1**205 W. Clark St., Urbana, IL 61801, USA.

⁷Department of Agronomy, Iowa State University Ames, IA 50011 USA.
⁸Department of Crop Sciences, University of Illinois Urbana, IL 61801 USA.
⁹Department of Plant Biology, University of Illinois Urbana, IL 61801 USA.
¹⁰Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ.
UK.

Acknowledgement:

This work was funded by the Energy Biosciences Institute, University of Illinois Urbana-Champaign.