Croton tree – Is it the answer to Africa's growing demand for cheap, low-carbon energy?

Michael Jacobson (Penn State) mgj2@psu.edu

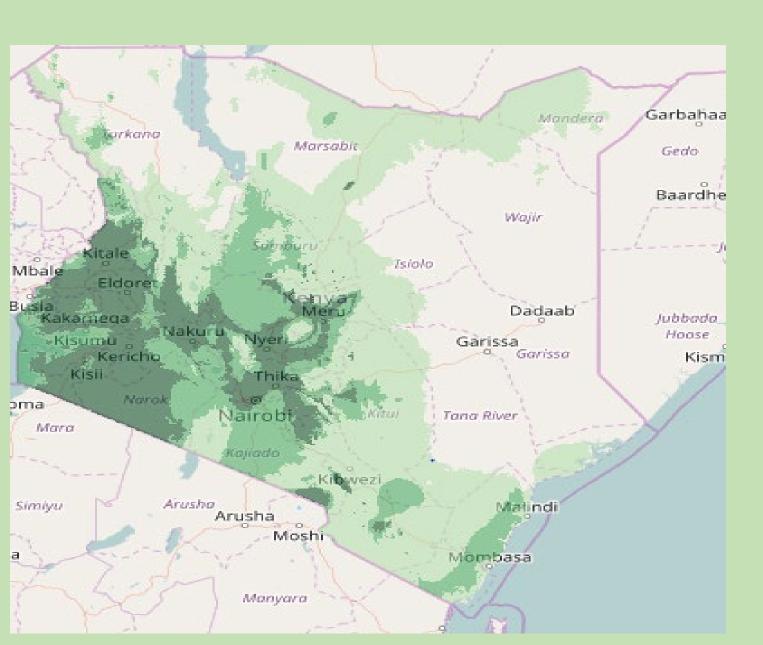
Yau-Huo (Jimmy) Shr (Iowa State), Floris Dalemans (Univ of Leuven), Christine Magaju and Rodrigo Ciannella (World Agroforestry Centre)

INTRO

- Access to energy needed to fuel livelihoods.
 Bioenergy products can provide energy income, while reducing (GHG) emissions.
- Croton megalocarpus (Croton) is an indigenous, prolific and widely distributed tree in East Africa.
- It is valuable feedstock for several applications.
- Croton seeds contain approximately 30-32% oil by weight and have a high protein content of 50%.

METHODS

Business case study and a choice experiment to examine household preferences in planting, cultivating, collecting and selling of seeds to the market.


RESULTS

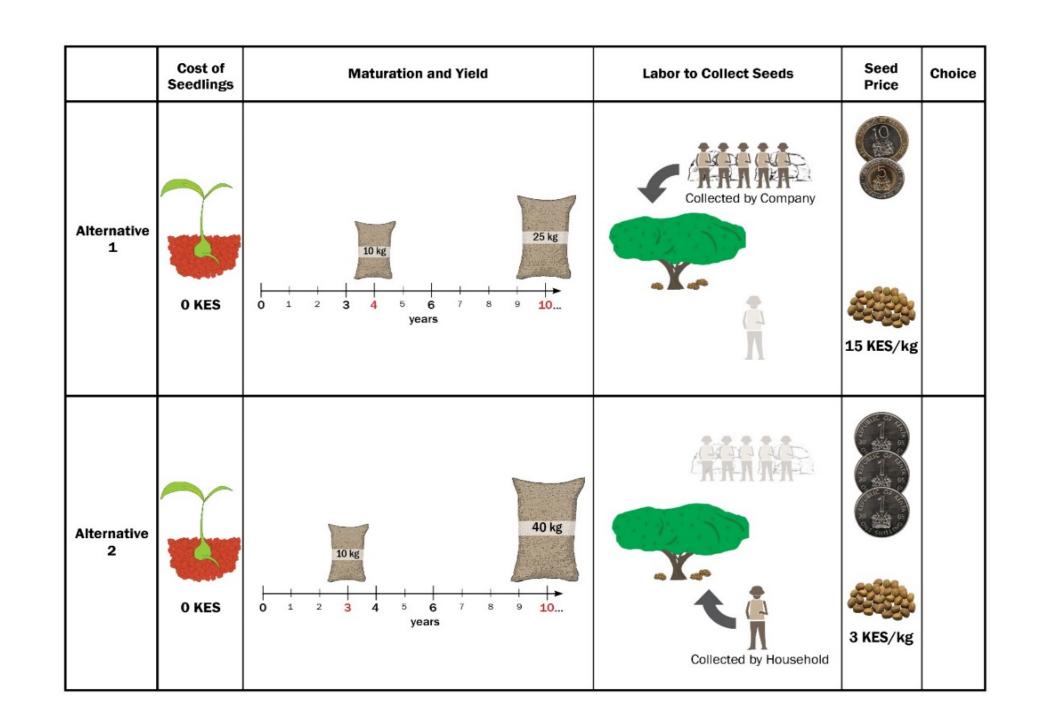
- For the poorest farmers surveyed, this additional income contributed up to 33-50% of their annual income.
- 'grateful to have money now' and, 'this is our coffee'.
- 91% of the respondents) are interested and willing to plant (more) croton trees.
- Only 48% of the collectors are satisfied with the current model arrangement.

ACTIONS

- Low labor requirements (alternative business models).
- Production efficiencies.
- Commercialization of products: optimal product mix, new products, niche markets.

Development of a Croton value chain can have positive impacts on rural livelihoods in East Africa

Croton suitability map for
Kenya based on temperature,
rainfall and elevation
(landscapes portal:
http://landscapeportal.org/m
aps/1740/view



Take a picture to download the full paper

Attribute	Definition	Level
Labour option (labour)	Households collect the seeds themselves	 1 = Yes (standard practice) 0 = No
Maturation period (mature)	Age at which tree starts bearing seeds. An annual production of 10 kg is assumed for the initial years (until 10th year)	 3 4 (standard age) 6
Seedling Price (seedling)	Cost of seedlings in KES	010 (standard price)20
Yield (yield)	Average kg the tree produces from 10 years onwards	1525 (standard yield)40
Seed price (price)	Amount in KES farmer receives for 1 kg of harvested seeds	 3 5 10 (standard price) 15 20 40

Attributes and	Attribute main effects	Standard deviations	
characteristics	(standard errors)	(standard errors)	
Labour option	-0.695*** (0.231)	1.056*** (0.314)	
Maturation	-0.392***(0.077)	0.437*** (0.105)	
Seedlings Price	-0.030**(0.014)	0.042 (0.027)	
Yield	0.079*** (0.010)	0.017 (0.025)	
Seed Price	0.320*** (0.038)	0.185*** (0.028)	
# of choice questions	2000		
Log-Likelihood	-592.98		
Pseudo R ²	0.572		
# of Parameters ^a	10		

Table 5Marginal rates of substitution (using Krinsky-Robb procedure with 1000 draws and the yield attribute as the common denominator) and relative importance of attribute.

Attributes	Marginal	rates of substitu	Relative	
	MRS	Standard errors	95% confidence intervals	importance
Labour	- 8.794	2.772	[- 14.226, - 3.361]	0.043
Maturation	- 4.958	0.953	[- 6.825, - 3.090]	0.072
Seedlings Price	- 0.376	0.188	[-0.744, -0.080]	0.037
Yield	1.000	n.a.	n.a.	0.121
Seed price	4.046	0.448	[3.168, 4.924]	0.727

Funding: World Agroforestry
Centre (ICRAF) Programme for
the Development of Alternative
Biofuel Crops