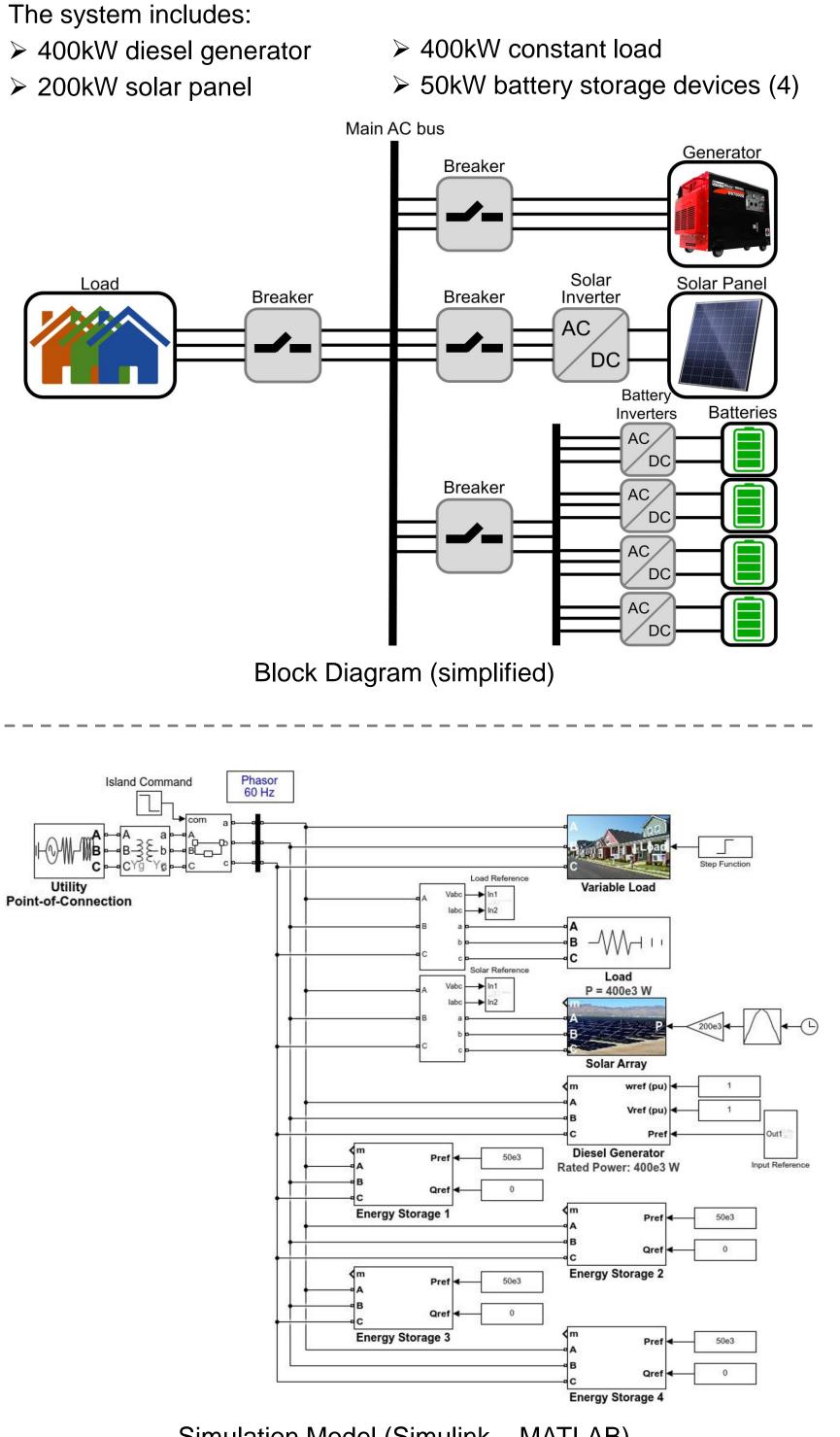
DEVELOPMENT OF DISTRIBUTED CONTROL METHODS FOR DISTRIBUTED STORAGE DEVICES IN MICROGRIDS

Colton Schlauderaff, Penn State Harrisburg, Electrical Engineering Dr. Javad Khazaei, Faculty Advisor, Electrical Engineering

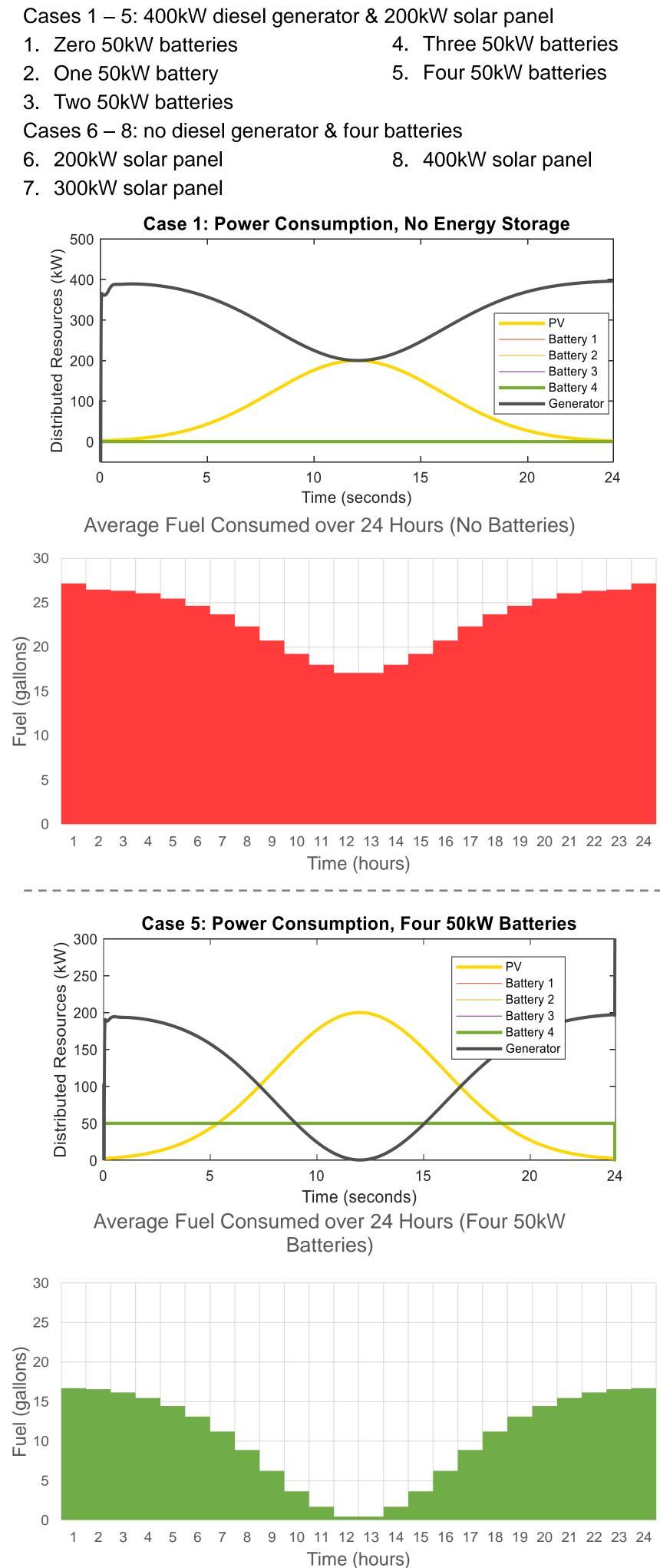

Background

Microgrids:

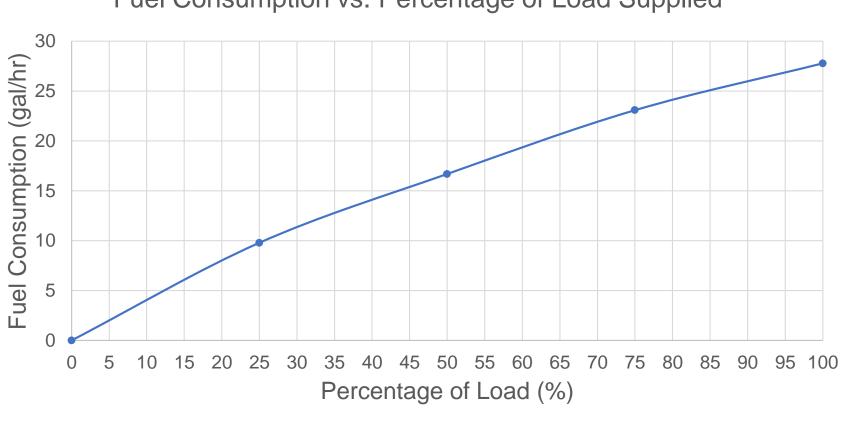
- Solution to rapid energy growth
- > Better equate real-time supply with demand
- Incorporate renewable energy & energy storage technology [1] Energy storage:
- > Solution to efficiency, quality, & need for fossil fuels
- > Can suffer from single point of failure & burden system financially **Research**:
- > How microgrids can save carbon dioxide emissions by application of energy storage

> Detailed cost analysis: diesel vs. solar & battery storage

System Diagram & Model


Simulation Model (Simulink – MATLAB)

PennState


DRAWDOWN

Case Studies

Fuel Consumption

400kW diesel generator consumes varied amounts of fuel based on percentage of load it supplies [2]

CO₂ Emission Reduction

400kW diesel generator CO₂ emission rate: 11.36 kg CO₂ / gal fuel [3]

	Case 1	Case 2	Case 3	Case 4	Case 5
total gal					
fuel	554.5076	492.482	423.1252	340.7912	249.1256
total kg CO ₂	6,297	5,593	4,805	3,870	2,829
Reduction	0%	11.18%	23.69%	38.54%	55.07%

 \succ Increments of 10% reduction interpolated from the graph trend and matched to total amounts of energy in kW (average over 24 hours) and MWh (total capacity)

> Average of 282kW of energy storage needed for 100% reduction.

Total Energy Sto	orage Needed Ov	er 24 Hours
CO ₂ Reduction	Average (kW)	Capacity (MWh)
0%	0	0
10%	44.5874	1070.098
11.18%	50	1200
20%	85.2199	2045.278
23.69%	100	2400
30%	122.2934	2935.042
38.54%	150	3600
40%	155.8079	3739.39
50%	185.7634	4458.322
55.07%	200	4800
60%	212.1599	5091.838
70%	234.9974	5639.938
80%	254.2759	6102.622
90%	269.9954	6479.89
100%	282.1559	6771.742

- > % values interpolated from graph trend for hourly calculations
 - Fuel Consumption vs. Percentage of Load Supplied

Cost Analysis

- Solar system: \$3,050 / kW before 30% tax credit reduction^{\$} [4] ➤ 400kW diesel generator: \$60,470 [5]
- Diesel generator fuel: \$3.17 / gallon [6]
- Lithium-ion energy storage battery: \$209 / kWh [7]

	Case 1	Case 2	Case 3
	Solar: 200kW Generator: 400kW 0 Batteries	Solar: 200kW Generator: 400kW 1 Battery: 50kW, 1.25MWh each	Solar: 200kW Generator: 400kW 2 Batteries: 100kW, 1.25MWh each
Solar system	\$427,000.00	\$427,000.00	\$427,000.00
Diesel generator	\$60,470.00	\$60,470.00	\$60,470.00
Diesel fuel	\$1,757.79	\$1,561.17	\$1,341.31
Batteries	\$0.00	\$260,832.00	\$521,664.00
Total	\$489,227.79	\$749,863.17	\$1,010,475.31
			. , ,
	Case 5	Case 6	
	Case 5 Solar: 200kW Generator: 400kW 4 Batteries: 200kW, 1.25MWh each	Case 6 Solar: 200kW 4 Batteries: 1.99MWh each	Case 7 Solar: 300kW 4 Batteries: 1.73MWh each
Solar system	Solar: 200kW Generator: 400kW 4 Batteries: 200kW,	Solar: 200kW 4 Batteries:	Case 7 Solar: 300kW 4 Batteries:
	Solar: 200kW Generator: 400kW 4 Batteries: 200kW, 1.25MWh each	Solar: 200kW 4 Batteries: 1.99MWh each	Case 7 Solar: 300kW 4 Batteries: 1.73MWh each
system Diesel	Solar: 200kW Generator: 400kW 4 Batteries: 200kW, 1.25MWh each \$427,000.00	Solar: 200kW 4 Batteries: 1.99MWh each \$427,000.00	Case 7 Solar: 300kW 4 Batteries: 1.73MWh each \$640,500.00
system Diesel generator	Solar: 200kW Generator: 400kW 4 Batteries: 200kW, 1.25MWh each \$427,000.00 \$60,470.00	Solar: 200kW 4 Batteries: 1.99MWh each \$427,000.00 \$0.00	Case 7 Solar: 300kW 4 Batteries: 1.73MWh each \$640,500.00 \$0.00
system Diesel generator Diesel fuel	Solar: 200kW Generator: 400kW 4 Batteries: 200kW, 1.25MWh each \$427,000.00 \$60,470.00 \$789.73	Solar: 200kW 4 Batteries: 1.99MWh each \$427,000.00 \$0.00 \$0.00	Case 7 Solar: 300kW 4 Batteries: 1.73MWh each \$640,500.00 \$0.00 \$0.00

^{\$} costs used assume this tax credit

Conclusions

- \succ Diesel generator with no energy storage costs the least: energy storage currently non-cost-competitive (Case 1)
- \succ No diesel generator with solar & four energy storage batteries: 6,297 kg of CO2 emissions saved (Cases 6-8)
- > 400kW solar panel & four energy storage batteries:
- investment of \$1,585,332.21 for 100% CO₂ reduction (Case 8) Solar energy has a slower cost increase than energy storage
- Distributing energy storage improves control and reliability

References

- [1] Ton, D., & Smith, M. (2012, October). The U.S. Department of Energy's
- Microgrid Initiative. The Electricity Journal, 25(8), 84-94. [2] Generac (2015, June). Industrial Diesel Generator Set SD400. Retrieved June 24, 2019.
- [3] Jakhrani, A. Q., Othman, A., Rigit, A. R. H., Samo, S. R., & Kamboh, S. A. (2012, March). Estimation of Carbon Footprints from Diesel Generator Emissions. 2012 International Conference in Green and Ubiquitous Technology, 1-4.
- [4] EnergySage (2019, May). How much do solar panels cost in the U.S. in 2019? Retrieved June 24, 2019. [5] American Generators (2019). 400 kW Perkins Diesel Generator Set – EPA.
- Retrieved July 1, 2019. [6] Assurance Power Systems (2018, July). How Much Does It Cost to Run a
- Generator? Retrieved July 1, 2019. [7] Fu, R., Remo, T., & Margolis, R. (2018, November). 2018 U.S. Utility-Scale
- Photovoltaics-Plus-Energy Storage System Costs Benchmark. National Renewable Energy Laboratory, 1-32.

July 30, 2019 Project Drawdown drawdown.org

Case 4 Solar: 200kW Generator: 400kW **3** Batteries 150kW, .25MWh each \$427,000.00 \$60,470.00 \$1,080.31 \$782,496.00 \$1,271,046.31 Case 8 Solar: 400kW 4 Batteries: 1.46MWh each \$854,000.00 \$0.00 \$0.00 \$1,220,560.00 \$2,074,560.00