Feasibility Analysis of Electric Vehicles in Pennsylvania

Corey Scamman^a, Elizabeth Traut^b
^aBucknell University, Computer Science and Economics
^bPenn State, Larson Transportation Institute

Significance

- ► Electric Vehicles are the future of clean transportation
- ► Fully electrifying passenger vehicles will reduce yearly carbon emissions by an estimated 55 million metric tons a year in PA alone^{1,2}
- One of the pillars needed to establish a sustainable society

Objectives and Methodology

- Developed framework for EV state level feasibility analysis
- Pennsylvania Case Study
- Literature Review of relevant written works
- ► Identify Government Policy and Incentives
- Analyze solutions to facilitate EV adoption
- Financial Cost Benefit Analysis

Barriers to Adoption

- UnderdevelopedCharging Infrastructure
- Range Anxiety
- Limited Battery
 Technology
- Expensive
- Public Misconceptions
- Limited Production
- Limited Variety
- Consumer Behavior

Solutions

- Government Policy and Incentives
 - Taxes, Rebates, Subsidies, and Funding
- Investment in Charging Infrastructure^{T1}
 - Complimentary and Residence Charging Stations
- Market Competition
 - Economies of Scale
- Education
- Research and Development

Charging Level	Voltage	Charging Time	Installation Cost	Location
Level 1	120 V AC	8 – 12 Hours	\$300 - \$4500	Home, Workplace
Level 2	208 – 240 V AC	4 – 6 Hours	\$1,000 - \$19,200	Home, Workplace, Public
DC Fast Charger	400 – 1000 V DC	20 – 30 Minutes	\$14,000 - \$91,000	Public, Charging Stations

(T1) Table 1: Types of EV chargers and relevant information³⁻⁵

What Can You Do?

- Consider whether an Electric Vehicle is right for you
 - Consider the added (in)convenience of EVs
 - Consider the financial implications of an EV
- Educate yourself and others about government incentives
- Is your workplace EV friendly?
- ► Is your residency EV friendly?
- ► Is your local and state government promoting EVs?

Electric Vehicles^{T2}

- Zero Tailpipe Emissions
- ► Higher Performance
- Range Anxiety
- ► Recharge Time
- Underdeveloped
 Charing Infrastructure
- Cheaper Operating Costs
- ► Simpler Engineering
- ► Regenerative Braking

DRAWDOWN

Conventional Vehicles^{T2}

- Lower Upfront Cost
- ► Faster Refuel Time
- ► Longer Driving Range
- Maintenance
- Fossil Fuel Dependent
- ► Not Sustainable
- ► Developed Refueling Infrastructure
- Complicated Internal Combustion Engine

Model	Price (W/O Incentives)		Performance (0 – 60 mph)	Range
Nissan Leaf	\$29,990	\$600 - \$650	7.4 seconds	150 miles
Tesla Model 3	\$38,990	\$500 - \$550	5.3 seconds	240 miles
Honda Civic	\$19,550	\$1150 - \$1250	6.7 seconds	430 miles

(T2) Table 2: Provides price, operating costs, range, and performance of 2 EVs and 1 ICE car for comparison⁶⁻¹³. OPC = Operating Cost

Pennsylvania RoadMap

- ► There are 4 possible future adoption scenarios^{F1}
 - ► (S1) Scenario 1: Low policy, low technology
 - ► (S2) Scenario 2: Low policy, high technology
 - ► (S3) Scenario 3: High policy, low technology
 - (S4) Scenario 4: High policy, high technology

PROJECTED GHG EMISSIONS

(F1) Figure 1: Graph of the four implementation scenarios. X Axis is GHG Emissions in Million Metric Tons. Y Axis is Time. From PA roadmap¹⁴

Key Findings

- As done by Norway, a carbon-based emission tax can be effective to reduce upfront price difference between EVs and ICE cars
- Public, private, work, and residential investment in charging stations is needed to establish the charging infrastructure
- Providing clear information and education is key to fixing the misconceptions surrounding EVs
- Market competitiveness will provide more EV variety, reduce cost, and increase range and performance
- Savings accumulate overtime due to lower operating costs