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Introduction- Why Nuclear? Small Modular Reactors Generation IV Reactor Types

Generally reactors with generating capacities below 300 MWe (as opposed to ~1000
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SMRs offer inherently safe, versatile, and economical energy options N o [ SR Gas-cooled fast reactor:
Uranium fuel is typically enriched in the fissile isotope %3°U up to 3.5-5% and “ *  Unique fuel composition: fuel : Combines benefits of fast
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Refueling cycles typically last 18-24 months at which point used nuclear fuel More versatile applications- seawater desalination, ' ehetits  Primary appeal of fast reactors is fuel management:
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controls, etc.), economics, used nuclear fuel storage Longer core life-up to ten years without refueling < b Gen IV improves efficiency and safety while offering * Enables recycling of used nuclear fuel as a fuel source

While nuclear energy is currently clean and safe, advanced nuclear reactors e " | additional applications. Fast reactors enable \ Can also be smaller and simpler than light-water based /

would greatly aid in the continued use and further development of nuclear energy Filippone and Associates LLC's Holos Gas-cooled Hardened Micro Modular Reactor improved fuel utilization and reduced waste production reactors
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Advanced Nuclear: Small Modular Reactors Conclusions Outlook-Near Term Developments

Advanced reactors are a significant departure from previous reactor designs. While currently deployed nuclear

(SM RS) and Generation IV ;Ezc}':z:.dsrs]igns provide reliable, clean, and safe energy and should be maintained, exciting new reactors are on « Chinergy’s HTR-PM (High Temperature Reactor-Pebble Bed Module) is scheduled to begin electricity
izon.

Global Developments-Gen IV on the way!

generation in 20191

SMRs Gen IV Small modular reactors and micro reactors * Russia’s BN-800 sodium-cooled fast reactor was completed in 2016 and is capable of producing 880 MWe?*

* Improve economic competitiveness and have reduced start-up capital costs of nuclear reactors
Light-water Gen Advanced reactors Larger scale (>300 IINTTH - " : S
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More similar to concepts and reactors * Enable higher levels of inherent safety, security, and safeguards by design NuScale Small Modular Reactor:
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advantages implementation of i “ S *  Employ fast neutron spectra that enables much more comprehensive and effective fuel management September, 2020- Nuclear Regulatory Commission scheduled to complete its review process
Gen IV (i.e. HTR-PM in - ﬁ - eneration 1+ including recycling used nuclear fuel, reducing the quantity and quality of used nuclear fuel, and 2026- First NuScale plant is scheduled to be operated by Utah Associated Municipal Power Systems
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Legislative Support:

el Advanced nuclear reactors bring a wide range of dramatic benefits to Nuclear Energy Innovation Capabilities Act (NEICA) passed in September 2018; Nuclear Energy Innovation and Modernization Act

e e ‘ revitalize the industry as is necessary for the most effective climate (NEIMA) passed in January, 2019; Nuclear Energy Leadership Act (NELA) currently in the full Senate (September, 2019). All aim to
W . . . .
| N remove rowadplpcks to advanced nuclear in the United States and support their development from multiple angles.
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