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Natural Building Materials

Living Building Materials

What is a Living Building Material? Transparent Wood Composite Windows
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Microbial Mortars
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Lichenous materials are a living material consisted of an abiotic structure and a lichen-based material which 1 Photosynthetic, carbon-sequestering bacteria, use calcium

benefit indoor environments through their moisture buffering capacity (see Figure 3), carbon sequestration, ] - present in its growth media and CO, from the atmosphere to
and bio-indication. Unlike plant-based materials, lichenous materials do not evapotranspire, yet interact with j , — produce CaCQO;. Depending upon the calcium content in the
indoor relative humidity. Similar to thermal buffering effects, materials with high moisture buffering values (i.e. 1m? Concrete 1m? Concrete growth media, the architecture of the precipitate can be
lichen) dampen relative humidity peaks. By reducing peak humidity loads, energy-expensive de-humidification volume €0, Emissions controlled to create a particle suitable for use in concrete.
can be decreased or even avoided. Additionally, these bio-based materials sequester carbon through Figure 4. Opportunity for carbon storage via

photosynthesis and can be used as bio-indicators to monitor and improve indoor air quality [4,5]. MICCP aggregate production.
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