

Optoelectronically Optimized Nonhomogeneous Thin-Film Solar Cells

Faiz Ahmad and Akhlesh Lakhtakia

NanoMM–Nanoengineered Metamaterials Group, The Pennsylvania State University

Summary	Design modifications	Results		
 Ubiquitous deployment of thin-film solar cells as local energy microsources will help: Human progress to become truly unconstrained by energy economics To reduce carbon dioxide emissions 	Conventional CIGS and CZTSSe solar cells: antireflection coatings/AZO(front-contact)/iZnO-CdS(buffer layers)/CIGS or CZTSSe (absorber layer)/Mo (back-contact) [5, 6]	Optoelectronic optimization of CIGS and CZTSSe solar cells		
	Design modifications: 1 CICE (CZTEE a banddoon dradind)		EfficiencyRef. (η)	

- > Colored thin-film solar cells more acceptable on rooftops due to
 - Aesthetics
- Resemblance to conventional rooftops
- > Efficiency enhancement of thin-film solar cells requires optoelectronic optimization of:

Introduction

- Bandgap grading of semiconductor layers
- Periodically corrugated backreflector
- Back-surface passivation

- 2. Periodically corrugated backreflector

3. Back-surface passivation (thin layer of alumina at the rear- side of CIGS/CZTSSe)			Sinusoidally grade conventional thick CIG	ed bandgap Solar cell	27.7%	Predicted [5]	
Efficiency maximization through optoelectronic optimization			Sinusoidally graded bandgap ultrathin 600-nm-thick CIGS solar cell		22.8% Predicted [5]		
MgF ₂ AZO	€ ^{1.3}	(a) (b) (b) (b)	Reference experiment solar cell	experimental CZTSSe		[3]	
iZnO CdS CIGS/CZTSSe	$ \begin{array}{c c} \mu & & \\ \mu & \\ \mu & \\ 1.1 \\ E_{g,min} = 0.91 \text{ eV} \\ E_{g,max} = 1.49 \text{ eV} \\ 0.9 \\ 0 & 0.2 & 0.4 & 0.6 \\ (z - L_w - L_{iZnO} - L_{CdS})/L \end{array} $	$A = 0.5$ $E_{g,min} = 1.1 \text{ eV}$ $E_{g,max} = 1.4 \text{ eV}$ $C_{L_s} = 3, \qquad \begin{pmatrix} c \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Sinusoidally grade conventional thick CZT	ed bandgap FSSe solar cell	17.0%	Predicted [6]	
Al ₂ O ₃ Mo	1.5 $A = 1.0, E_{g,min} = 0.91 \text{ eV}, \alpha = 0.5$ M = 1.3 $K = 2, \psi = 0.75$		Sinusoidally graded bandgap optimal 870-nm-thick CZTSSe solar cell		21.7%	Predicted [6]	
$\overleftarrow{\boldsymbol{\zeta}} L_{\mathrm{x}}$		$ \begin{array}{c c} & -1.1 \\ \hline 0.9 \\ \hline 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1. \end{array} \begin{array}{c c} -1.1 \\ \hline 0.9 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1. \end{array} \right) $	Efficiency loss for red thin-film solar cells				
L _x Jnit cell of CIGS/CZTSSe solar cell	(z- <i>L</i> _w - <i>L</i> _{izno} - <i>L</i> _{cds})/ Representative pr and (bottom) sinu	cs (z-L _w -L _{iZnO} -L _{cdS})/L _s ofiles of (top) linearly soidally graded bandgap	Solar cell	Fraction of red photons rejected	ed effi redu	tive ciency iction	
			CIGS solar cell	50%	8.9 ±	:0.7%	
Colored Thin-film Solar Cells			100%	17.6±1.4%			
		CZTSSe solar cell	50% 7.0		± 2.05%		
Color-rejection filter on	top to reflect	Front electrode		100%	15.8	\$±2.7%	
certain fraction of incident photons of <i>Colored filte</i> certain colors		Colored filter Antireflection coatings	Concluding Remarks				
Structural (non-pigmental) color $Buffer layer$ Non-iridescent filters by: Dimensional scaling of biomimetic filters nano-imprinted to reproduce the Morpho blue [7] $p - n or$ $p - i - n junction$		Experimental validation	tion will help	revolution	ize thin-filn		
		p - n or p - i - n junction	Solar Cell technology				
		Backreflector (back electrode)	Colored and cost-effective thin-film solar cells will increase large-scale production and ubiquitous adoption				

Key challenge: high efficiency at low cost

- Solution: Thin-film solar cells due to [1]:
- Reduced material consumption
- Reduced manufacturing cost
- > Major concerns inhibiting widespread adoption:
- Scarcity and cost of rare materials such as In in CIGS and Te in CdTe solar cells [2]
- Low efficiencies such as of a-Si and CZTSSe solar cells [3]
- > Large-scale adoption of solar cells to rooftops inhibited due to black or blue appearance [4]
- > New strategies are required for thin-film solar cells:
- Ubiquitous adoption as local energy microsources
- Enhance acceptance for rooftop deployment

Acknowledgements

A. Lakhtakia thanks the Charles Godfrey Binder Endowment at the Pennsylvania State University for ongoing support of his research. The research of F. Ahmad and A. Lakhtakia was partially supported by US National Science Foundation (NSF) under grant number DMS-1619901.

Objectives

> Design and optimize novel thin-film solar cells to:

- Enhance efficiency
- Reduce the material use

Estimate efficiency loss due to color-rejection filter

Optoelectronic modeling and optimization

References

[1] T.D. Lee and A.U. Ebong, *Renew. Sustain. Energ. Reviews* **70**, 1286–1297 (2017). [2] C. Candelise, M. Winskel, and R. Gross, *Prog. Photovolt. Res. Appl.* **20**, 816–831 (2012). [3] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, Prog. Photovolt. Res. Appl. 26, 3–12 (2018).

[4] T. Lenau, F. Ahmad, and A. Lakhtakia, Proc. SPIE 10965, 109650E (2019).

[5] F. Ahmad, T.H. Anderson, P.B. Monk, and A. Lakhtakia, Appl. Opt. 58, 6067–6078 (2019). [6] F. Ahmad, A. Lakhtakia, T.H. Anderson, and P.B. Monk, "Towards highly efficient thin-Im solar cells with a graded-bandgap CZTSSe layer" under review.

[7] A. Saito, J. Murase, M. Yonezawa, H. Watanabe, T. Shibuya, M. Sasaki, T. Ninomiya, S. Noguchi, M. Akai-Kasaya, and Y. Kuwahara, Proc. SPIE 8339, 83390C (2012).